CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

Large capacitance Series

- Features: 105°C,2000hrs, Low ESR & large capacitance
- Recommended Applications: Used switching regulator applications in computer. Especially for high frequency.

Specifications

_ оросии	cations								
	Item	Characteristics							
Category T	emperature Range	-55 ~ +105℃							
Rated Volta	ige Range	2.5 ~28VDC							
	acitance Range	33 ~ 820 ½ F							
	e Tolerance	±20% at 120Hz , 20°C							
Surge Volta	ige	2.5V~25V Rated voltage (V) x	1.15, 28V Products	is 28V at 25°	C				
Leakage Ci	urrent (MAX) (20°ℂ)	I≤0.2 CV (After rated voltage	applied for 2 minu	tes)					
Leakage Ci		I= Leakage Current (μA)							
Dissipation	Factor (MAX)	WV	2.5 ~ 6.3V	16 ~ 28V					
$(\tan\delta)$ (120)Hz ,20°C)	$ an \delta$	0.08	0.12					
Low Temperature Stability		Z(100KHz) WV	2.5 ~ 28V						
	Ratio (MAX) (20°ℂ)	Z-25°C / Z+20°C	≦1.15						
·		Z-55°C / Z+20°C	≦1.25						
		After applying rated voltage for 2000 hours at 105° C, the capacitor shall meet the following requirement.							
	105°ℂ, 2000hrs,	Appearance	<u> </u>	No significant damage					
Endurance	Rated Voltage applied	Capacitance Change	Within ±20% of the initial value						
	(28V>25V)※1	Dissipation Factor	Not more than 150% of the initial specified value						
		Equivalent Series Resistance	Not more than 150% of the initial specified value						
		Leakage Current	Not more than the initial specified value						
Humidity Test		After subjecting 90 to 95% RH for 1000 hours at 60° . the capacitors shall meet the requirement as Endurance.							
Surge Voltage Test		After subjecting to 1,000 cycles each consisting of charge with the surge voltage specified at normal							
		temperature for 30 seconds through a protective resistor and discharge for 5 minutes 30 seconds,							
		the capacitors shall meet the requirement as Endurance.							
Failure Rate	(MAX)	0.5% per 1,000 hours (confidence level 60% at 105°C)							

%1Please reduce 0.15V per 1℃ from over 85℃ for 28V products

■ Diagram of Dimensions

■ Marking : case with red printing

Size code	ϕ DXL	Р	ϕ d	а
E08	6.3X8	2.5	0.6	1.0
G08	8X8	3.5	0.6	1.5

Multiplier for Ripple Current

Frequency (Hz)	120≦F<1K	1K≦F<10K	10K≦F<100K	100K≦F≦500K
Coefficient	0.05	0.3	0.7	1

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

Large capacitance Series

■ Dimensions,Rated Ripple Current,Equivalent Series Resistance

Capacitance (uF)	Rated Voltage								
	2.5V			4V			6.3V		
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
470							8x8	5700	8
560				6.3x8	5000	7	6.3x8	4700	8
				8x8	6100	7	8x8	5700	8
820	6.3x8	5000	7						
	8x8	6100	7						

Capacitance (uF)	Rated Voltage								
	16V			28V					
	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR	SIZE	RIPPLE	ESR
33				6.3x8	1650	35			
56				8x8	1980	35			
100	6.3x8	2820	25						
270	8x8	5000	11						

 $^{\ \, \}text{$\stackrel{<}{\simeq}$ SIZE}: \ \, \phi \, \text{DxL(mm)} \ \, \ \, \text{$\stackrel{<}{\simeq}$} \tan \delta : 20^{\circ}\text{C}, 120\text{Hz}. \ \, \\ \, \ \, \text{$\stackrel{<}{\simeq}$} \text{Ripple Current:} \\ \, \ \, \text{CnN}, 100\text{KHz} \ \, \ \, \text{$\stackrel{<}{\simeq}$} \ \, \text{ESR(m} \, \Omega). \\ \, \ \, 20^{\circ}\text{C}. 100\text{KHz} \ \, \ \, \text{$\stackrel{<}{\simeq}$} \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{CnN}, 100\text{KHz} \ \, \ \, \text{$\stackrel{<}{\simeq}$} \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{CnN}, 100\text{KHz} \ \, \text{$\stackrel{<}{\simeq}$} \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{CnN}, 100\text{KHz} \ \, \text{$\stackrel{<}{\simeq}$} \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{CnN}, 100\text{KHz} \ \, \text{$\stackrel{<}{\simeq}$} \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \ \, \text{ESR(m} \, \Omega). \\ \, \ \ \, \text{$